Reference: Devault A, et al. (2008) Interplay between S-Cyclin-dependent Kinase and Dbf4-dependent Kinase in Controlling DNA Replication through Phosphorylation of Yeast Mcm4 N-Terminal Domain. Mol Biol Cell 19(5):2267-77

Reference Help

Abstract

Monitoring Editor: Orna Cohen-Fix Cyclin-dependent (CDK) and Dbf4-dependent (DDK) kinases trigger DNA replication in all eukaryotes but how these kinases cooperate to regulate DNA synthesis is largely unknown. Here we show that budding yeast Mcm4 is phosphorylated in vivo during S phase in a manner dependent on the presence of five CDK phosphoacceptor residues within Mcm4's N-terminal domain. Mutation to alanine of these five sites (mcm4-5A) abolishes phosphorylation and decreases replication origin firing efficiency at 22 degrees C. Surprisingly the loss of function mcm4-5A mutation confers cold- and HU-sensitivity to DDK gain of function conditions (mcm5/bob1 mutation or DDK overexpression), implying that phosphorylation of Mcm4 by CDK somehow counteracts negative effects produced by ectopic DDK activation. Deletion of the S-phase cyclins Clb5,6 is synthetic lethal with mcm4-5A and mimics its effects on DDK up mutants. Furthermore, we find that Clb5 expressed late in the cell cycle can still suppress the lethality of clb5,6Delta bob1 cells, whereas mitotic cyclins Clb2, 3 or 4 expressed early cannot. We propose that the N-terminal extension of eukaryotic Mcm4 integrates regulatory inputs from S-CDK and DDK, which may play an important role for the proper assembly or stabilization of replisome-progression complexes.

Reference Type
Journal Article
Authors
Devault A, Gueydon E, Schwob E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference