Reference: Hoyt MA, et al. (2008) A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 25(3):199-217

Reference Help

Abstract

The great majority of proteasome substrates are marked for degradation by the attachment of polyubiquitin chains. Ornithine decarboxylase is degraded by the proteasome in the absence of this modification. We previously showed that this mechanism of degradation was conserved in eukaryotic cells. Here we use a reporter destabilized by mouse ornithine decarboxylase to screen non-essential Saccharomyces cerevisiae deletion mutants. We identified novel mutants that affect both ubiquitin-dependent and -independent proteasome degradation pathways. YLR021W (IRC25/POC3) and YPL144W (POC4) encode interacting proteins that function in proteasome assembly, with putative homologues widespread among eukaryotes. Several additional mutants suffered from defects in proteasome-mediated proteolysis. These included mutants in the urmylation pathway of protein modification (but not the Urm1 modifier itself) and the Reg1 regulatory subunit of protein phosphatase 1. Finally, we noted increased rates of ornithine decarboxylase turnover in an rpn10Delta mutant in which the degradation of certain ubiquitinated substrates is impaired. Together, these results highlight the utility of a ubiquitin-independent degron in uncovering novel factors affecting general and substrate-specific proteasome function. Copyright (c) 2008 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Hoyt MA, McDonough S, Pimpl SA, Scheel H, Hofmann K, Coffino P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference