Reference: Fagarasanu A and Rachubinski RA (2007) Orchestrating organelle inheritance in Saccharomyces cerevisiae. Curr Opin Microbiol 10(6):528-38

Reference Help

Abstract

The biochemical functions of eukaryotic cells are often compartmentalized into membrane-bound organelles to increase their overall efficiency. Although some organelles can be formed anew, cells have evolved elaborate mechanisms to ensure the faithful inheritance of their organelles. In contrast to cells that divide by fission, the budding yeast Saccharomyces cerevisiae must actively and vectorially deliver half of its organelles to the growing bud. To achieve this, proteins called formins are strategically localized to the bud, where they assemble an array of actin cables that radiate deep into the mother cell. Class V myosin motors use these cables as tracks to transport various organelles, including peroxisomes, a portion of the vacuole and elements of the endoplasmic reticulum and Golgi complex. By contrast, mitochondria do not engage a myosin motor for their movement but instead use Arp2/3-nucleated actin polymerization for their bud-directed motility. The translocation machineries work cooperatively with molecular devices that retain organelles within both mother cell and bud to ensure an equitable division of organelles between them. While organelle inheritance requires specific proteins tailored for the inheritance of each type of organelle, it is becoming apparent that a set of fundamental rules underlies the inheritance of all organelles.

Reference Type
Journal Article
Authors
Fagarasanu A, Rachubinski RA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference