Take our Survey

Reference: Jefferies KC and Forgac M (2008) Subunit h of the vacuolar (h+) ATPase inhibits ATP hydrolysis by the free v1 domain by interaction with the rotary subunit f. J Biol Chem 283(8):4512-9

Reference Help

Abstract


The vacuolar (H+)-ATPases (V-ATPases) are large, multimeric proton pumps that, like the related family of F1F0 ATP synthases, employ a rotary mechanism. ATP hydrolysis by the peripheral V1 domain drives rotation of a rotary complex (the rotor) relative to the stationary part of the enzyme (the stator), leading to proton translocation through the integral V0 domain. One mechanism of regulating V-ATPase activity in vivo involves reversible dissociation of the V1 and V0 domains. Unlike the corresponding domains in F1F0, the dissociated V1 domain does not hydrolyze ATP and the free V0 domain does not passively conduct protons. These properties are important to avoid generation of an uncoupled ATPase activity or an unregulated proton conductance upon dissociation of the complex in vivo. Previous results (Parra, K.J., Keenan K.L., and Kane P.M., (2000) J. Biol. Chem. 275, 21761-7) showed that subunit H (part of the stator) inhibits ATP hydrolysis by free V1. To test the hypothesis that subunit H accomplishes this by bridging rotor and stator in free V1, cysteine-mediated cross-linking studies were performed. Unique cysteine residues were introduced over the surface of subunit H from yeast by site-directed mutagenesis and used as the site of attachment of the photo-activated cross-linking reagent maleimido benzophenone (MBP). Following UV-activated cross-linking, cross-linked products were identified by Western blot using subunit specific antibodies. The results indicate that the subunit H mutant S381C shows cross-linking between subunit H and subunit F (a rotor subunit) in the free V1 domain but not in the intact V1V0 complex. These results indicate that subunits H and F are proximal in free V1, supporting the hypothesis that subunit H inhibits free V1 by bridging the rotary and stator domains.

Reference Type
Journal Article
Authors
Jefferies KC, Forgac M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference