Take our Survey

Reference: Kelly MK, et al. (2007) Zinc regulates the stability of repetitive minisatellite DNA tracts during stationary phase. Genetics 177(4):2469-79

Reference Help

Abstract

Repetitive minisatellite DNA tracts are stable in mitotic cells but unstable in meiosis, altering in repeat number and repeat composition. As relatively little is known about the factors that influence minisatellite stability, we isolated mutations that destabilize a minisatellite repeat tract in the ADE2 gene of Saccharomyces cerevisiae. One mutant class exhibited a novel color segregation phenotype, "blebbing," characterized by minisatellite instability during stationary phase. Minisatellite tract alterations in blebbing strains consist exclusively of the loss of one 20-bp repeat. Timing experiments suggest that these tract alterations occur only after cells have entered stationary phase. Two complementation groups identified in this screen have mutations in either the high-affinity zinc transporter ZRT1 or its zinc-dependent transcriptional regulator ZAP1. The Deltazrt1 mutant specifically affects the stability of minisatellite tracts; microsatellites or simple insertions in the ADE2 reading frame are not destabilized by loss of ZRT1. The Deltazrt1 blebbing phenotype is partially dependent on a functional RAD50. Zinc is known for its role as an essential cofactor in many DNA-binding proteins. We describe possible models by which zinc can influence minisatellite stability. Our findings directly implicate zinc homeostasis in the maintenance of genomic stability during stationary phase.

Reference Type
Journal Article
Authors
Kelly MK, Jauert PA, Jensen LE, Chan CL, Truong CS, Kirkpatrick DT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference