Take our Survey

Reference: Han D, et al. (2008) A kinase inhibitor activates the IRE1alpha RNase to confer cytoprotection against ER stress. Biochem Biophys Res Commun 365(4):777-83

Reference Help

Abstract


Unfolded proteins in the endoplasmic reticulum (ER) cause trans-autophosphorylation of the bifunctional transmembrane kinase IRE1alpha, inducing its RNase activity to splice XBP1 mRNA, in turn triggering a transcriptional program in the unfolded protein response (UPR). As we previously showed with the yeast IRE1 kinase ortholog, a single missense mutation in the ATP-binding pocket of murine IRE1alpha kinase sensitizes it to the ATP-competitive inhibitor 1NM-PP1, and subordinates RNase activity to the drug. This highly unusual mechanism of kinase signaling requiring kinase domain ligand occupancy-even through an inhibitor-to activate a nearby RNase has therefore been completely conserved through evolution. We also demonstrate that engagement of the drug-sensitized IRE1alpha kinase through this maneuver affords murine cells cytoprotection under ER stress. Thus kinase inhibitors of IRE1alpha are useful for altering the apoptotic outcome to ER stress, and could possibly be developed into drugs to treat ER stress-related diseases.

Reference Type
Journal Article
Authors
Han D, Upton JP, Hagen A, Callahan J, Oakes SA, Papa FR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference