Take our Survey

Reference: Patel SS and Rexach MF (2008) Discovering novel interactions at the nuclear pore complex using bead halo: a rapid method for detecting molecular interactions of high and low affinity at equilibrium. Mol Cell Proteomics 7(1):121-31

Reference Help

Abstract


A highly sensitive, equilibrium-based binding assay termed "Bead Halo" was used here to identify and characterize interactions involving components of the nucleocytoplasmic transport machinery in eukaryotes. Bead Halo uncovered novel interactions between the importin Kap95 and the nucleoporins (nups) Nic96, Pom34, Gle1, Ndc1, Nup84, and Seh1, which likely occur during nuclear pore complex biogenesis. Bead Halo was also used to characterize the molecular determinants for binding between Kap95 and the family of nups that feature multiple phenylalanine-glycine motifs (FG nups). Binding was sensitive to the number of FG motifs present and to amino acid (AA) residues immediately flanking the FG motifs. Also, binding was reduced but not abolished when phenylalanine residues in all FG motifs were replaced by tyrosine or tryptophan. These results suggest flexibility in the binding pockets of Kap95 and synergism in binding FG motifs. The hypothesis that Nup53 and Nup59 bind directly to membranes through a C-terminal amphipathic alpha helix and to DNA via an RNA recognition motif domain was also tested and validated using Bead Halo. The results support a role for these nups in nuclear pore membrane biogenesis and in gene expression. Finally, Bead Halo detected binding of the nups Gle1, Nup60, and Nsp1 to phospholipid bilayers. This may reflect the known interaction between Gle1 and phosphoinositides and suggests similar interactions for Nup60 and Nsp1. As the Bead Halo assay detected molecular interactions in cell lysates, as well as between purified components, it can be adapted for large-scale proteomic studies using automated robotics and microscopy.

Reference Type
Journal Article
Authors
Patel SS, Rexach MF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference