Reference: Ma J, et al. (2007) An interrelationship between autophagy and filamentous growth in budding yeast. Genetics 177(1):205-14

Reference Help

Abstract

Over the last 15 years, yeast pseudohyphal growth (PHG) has been the focus of intense research interest as a model of fungal pathogenicity. Specifically, PHG is a stress response wherein yeast cells deprived of nitrogen form filaments of elongated cells. Nitrogen limitation also induces autophagy, a ubiquitous eukaryotic stress response in which proteins are trafficked to the vacuole/lysosome for degradation and recycling. Although autophagy and filamentous growth are both responsive to nitrogen stress, a link between these processes has not been investigated to date. Here, we present several studies describing an interrelationship between autophagy and filamentous growth. By microarray-based expression profiling, we detect extensive upregulation of the pathway governing autophagy during early PHG and find both processes active under conditions of nitrogen stress in a filamentous strain of budding yeast. Inhibition of autophagy results in increased PHG, and autophagy-deficient yeast induce PHG at higher concentrations of available nitrogen. Our results suggest a model in which autophagy mitigates nutrient stress, delaying the onset of PHG; conversely, inhibition of autophagy exacerbates nitrogen stress, resulting in precocious and overactive PHG. This physiological connection highlights the central role of autophagy in regulating the cell's nutritional state and the responsiveness of PHG to that state.

Reference Type
Journal Article
Authors
Ma J, Jin R, Jia X, Dobry CJ, Wang L, Reggiori F, Zhu J, Kumar A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference