Reference: Bakalarski CE, et al. (2007) The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics. Anal Bioanal Chem 389(5):1409-19

Reference Help

Abstract


Proteomic analyses via tandem mass spectrometry have been greatly enhanced by the recent development of fast, highly accurate instrumentation. However, successful application of these developments to high-throughput experiments requires careful optimization of many variables which adversely affect each other, such as mass accuracy and data collection speed. We examined the performance of three shotgun-style acquisition methods ranging in their data collection speed and use of mass accuracy in identifying proteins from yeast-derived complex peptide and phosphopeptide-enriched mixtures. We find that the combination of highly accurate precursor masses generated from one survey scan in the FT-ICR cell, coupled with ten data-dependent tandem MS scans in a lower-resolution linear ion trap, provides more identifications in both mixtures than the other examined methods. For phosphopeptide identifications in particular, this method identified over twice as many unique phosphopeptides as the second-ranked, lower-resolution method from triplicate 90-min analyses (744 +/- 50 vs. 308 +/- 50, respectively). We also examined the performance of four popular peptide assignment algorithms (Mascot, Sequest, OMSSA, and Tandem) in analyzing the results from both high-and low-resolution data. When compared in the context of a false positive rate of approximately 1%, the performance differences between algorithms were much larger for phosphopeptide analyses than for an unenriched, complex mixture. Based upon these findings, acquisition speed, mass accuracy, and the choice of assignment algorithm all largely affect the number of peptides and proteins identified in high-throughput studies.

Reference Type
Journal Article
Authors
Bakalarski CE, Haas W, Dephoure NE, Gygi SP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference