Reference: Matsuda K, et al. (2007) Yeast two-hybrid analysis of the origin recognition complex of Saccharomyces cerevisiae: interaction between subunits and identification of binding proteins. FEMS Yeast Res 7(8):1263-9

Reference Help

Abstract


Origin recognition complex (ORC), a six-protein complex (Orc1p-6p), is the most likely initiator of chromosomal DNA replication in eukaryotes. Although ORC of Saccharomyces cerevisiae has been studied extensively from biochemical and genetic perspectives, its quaternary structure remains unknown. Previous studies suggested that ORC has functions other than DNA replication, such as gene silencing, but the molecular mechanisms of these functions have not been determined. In this study, we used yeast two-hybrid analysis to examine the interaction between ORC subunits and to search for ORC-binding proteins. As well as the known Orc4p-Orc5p interaction, we revealed strong interactions between Orc2p and Ord3p (2p-3p), Orc2p and Ord5p (2p-5p), Orc2p and Ord6p (2p-6p) and Orc3p and Ord6p (3p-6p) and weaker interactions between Orc1p and Ord4p (1p-4p), Orc3p and Ord4p (3p-4p), Orc2p and Ord3p (3p-5p) and Orc5p and Ord3p (5p-6p). These results suggest that 2p-3p-6p may form a core complex. Orc2p and Orc6p are phosphorylated in vivo, regulating initiation of DNA replication. However, replacing the phosphorylated amino acid residues with others that cannot be phosphorylated, or that mimic phosphorylation, did not affect subunit interactions. We also identified several proteins that interact with ORC subunits; Sir4p and Mad1p interact with Orc2p; Cac1p and Ykr077wp with Orc3p; Rrm3p and Swi6p with Orc5p; and Mih1p with Orc6p. We discuss roles of these interactions in functions of ORC.

Reference Type
Journal Article
Authors
Matsuda K, Makise M, Sueyasu Y, Takehara M, Asano T, Mizushima T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference