Take our Survey

Reference: Pertschy B, et al. (2007) Cytoplasmic Recycling of 60S Preribosomal Factors Depends on the AAA Protein Drg1. Mol Cell Biol 27(19):6581-92

Reference Help

Abstract


Allelic forms of DRG1/AFG2 confer resistance to the drug diazaborine, an inhibitor of ribosome biogenesis in yeast. Our results show that the AAA-ATPase Drg1 is essential for 60S maturation and associates with 60S precursor particles in the cytoplasm. Functional inactivation of Drg1 leads to an increased cytoplasmic localization of shuttling pre-60S maturation factors like Rlp24, Arx1 and Tif6. Surprisingly, Nog1, a nuclear pre-60S factor, was also relocalized to the cytoplasm under these conditions, suggesting that it is a previously unsuspected shuttling pre-ribosomal factor that is exported with the precursor particles and very rapidly reimported. Proteins that became cytoplasmic under drg1 mutant conditions were blocked on pre-60S particles at a step that precedes the association of Rei1, a later acting pre-ribosomal factor. A similar cytoplasmic accumulation of Nog1 and Rlp24 in pre-60S bound form could be seen after overexpression of a dominant negative Drg1 variant mutated in the D2 ATPase domain. We conclude that the ATPase activity of Drg1 is required for the release of shuttling proteins from the pre-60S particles shortly after their nuclear export. This early cytoplasmic release reaction defines a novel step in eukaryotic ribosome maturation.

Reference Type
Journal Article
Authors
Pertschy B, Saveanu C, Zisser G, Lebreton A, Tengg M, Jacquier A, Liebminger E, Nobis B, Kappel L, van der Klei I, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference