Take our Survey

Reference: Polevoda B and Sherman F (2007) Methylation of proteins involved in translation. Mol Microbiol 65(3):590-606

Reference Help

Abstract

Methylation is one of the most common protein modifications. Many different prokaryotic and eukaryotic proteins are methylated, including proteins involved in translation, including ribosomal proteins (RPs) and translation factors (TFs). Positions of the methylated residues in six Escherichia coli RPs and two Saccharomyces cerevisiae RPs have been determined. At least two RPs, L3 and L12, are methylated in both organisms. Both prokaryotic and eukaryotic elongation TFs (EF1A) are methylated at lysine residues, while both release factors are methylated at glutamine residues. The enzymes catalysing methylation reactions, protein methyltransferases (MTases), generally use S-adenosylmethionine as the methyl donor to add one to three methyl groups that, in case of arginine, can be asymetrically positioned. The biological significance of RP and TF methylation is poorly understood, and deletions of the MTase genes usually do not cause major phenotypes. Apparently methylation modulates intra- or intermolecular interactions of the target proteins or affects their affinity for RNA, and, thus, influences various cell processes, including transcriptional regulation, RNA processing, ribosome assembly, translation accuracy, protein nuclear trafficking and metabolism, and cellular signalling. Differential methylation of specific RPs and TFs in a number of organisms at different physiological states indicates that this modification may play a regulatory role.

Reference Type
Journal Article
Authors
Polevoda B, Sherman F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference