Take our Survey

Reference: Moreno MA, et al. (2007) The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol Microbiol 64(5):1182-97

Reference Help

Abstract

We have previously shown that Aspergillus fumigatus is able to grow in zinc-limiting media and that this ability is regulated at transcriptional level by both the availability of zinc and pH. When A. fumigatus grows as a pathogen, it must necessarily obtain zinc from the zinc-limiting environment provided by host tissue. Accordingly, the regulation of zinc homeostasis by some zinc-responsive transcriptional regulator in A. fumigatus must be essential for fungal growth within tissues of an immunocompromised host and, in turn, for pathogenicity. Here we provide evidence of the role of the zafA gene in regulating zinc homeostasis and its relevance in the virulence of A. fumigatus. Thus, we observed that (i) zafA can functionally replace the ZAP1 gene from Saccharomyces cerevisiae that encodes the zinc-responsive transcriptional activator Zap1 protein; (ii) the expression of zafA itself is induced in zinc-limiting media and repressed by zinc; (iii) deletion of zafA impairs the germination and growth capacity of A. fumigatus in zinc-limiting media; and (iv) the deletion of zafA abrogates A. fumigatus virulence in a murine model of invasive aspergillosis. In light of these observations, we concluded that ZafA is a zinc-responsive transcriptional activator that represents an essential attribute for A. fumigatus pathogenicity. Consequently, ZafA may constitute a new target for the development of chemotherapeutic agents against Aspergillus, because no zafA orthologues have been found in mammals.

Reference Type
Journal Article
Authors
Moreno MA, Ibrahim-Granet O, Vicentefranqueira R, Amich J, Ave P, Leal F, Latge JP, Calera JA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference