Take our Survey

Reference: Viscardi V, et al. (2007) MRX-dependent DNA damage response to short telomeres. Mol Biol Cell 18(8):3047-58

Reference Help

Abstract

Telomere structure allows cells to distinguish the natural chromosome ends from double-strand breaks (DSBs). However, DNA damage response proteins are intimately involved in telomere metabolism, suggesting that functional telomeres may be recognized as DNA damage during a time window. Here we show by two different systems that short telomeres are recognized as DSBs during the time of their replication, because they induce a transient MRX-dependent DNA damage checkpoint response during their prolonged elongation. The MRX complex, which is recruited at telomeres under these conditions, dissociates from telomeres concomitantly with checkpoint switch off when telomeres reach a new equilibrium length. We also show that MRX recruitment to telomeres is sufficient to activate the checkpoint independently of telomere elongation. We propose that MRX can signal checkpoint activation by binding to short telomeres only when they become competent for elongation. Because full-length telomeres are refractory to MRX binding and the shortest telomeres are elongated of only a few base pairs per generation, this limitation may prevent unscheduled checkpoint activation during an unperturbed S phase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Viscardi V, Bonetti D, Cartagena-Lirola H, Lucchini G, Longhese MP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference