Take our Survey

Reference: Brynildsen MP, et al. (2007) Biological network mapping and source signal deduction. Bioinformatics 23(14):1783-91

Reference Help

Abstract


MOTIVATION: Many biological networks, including transcriptional regulation, metabolism, and the absorbance spectra of metabolite mixtures, can be represented in a bipartite fashion. Key to understanding these bipartite networks are the network architecture and governing source signals. Such information is often implicitly imbedded in the data. Here we develop a technique, Network Component Mapping (NCM), to deduce bipartite network connectivity and regulatory signals from data without any need for prior information. RESULTS: We demonstrate the utility of our approach by analyzing UV-vis spectra from mixtures of metabolites and gene expression data from Saccharomyces cerevisiae. From UV-vis spectra, hidden mixing networks and pure component spectra (sources) were deduced to a higher degree of resolution with our method than other current bipartite techniques. Analysis of S. cerevisiae gene expression from two separate environmental conditions (zinc and DTT treatment) yielded transcription networks consistent with ChIP-chip derived network connectivity. Due to the high degree of noise in gene expression data the transcription network for many genes could not be inferred. However, with relatively clean expression data, our technique was able to deduce hidden transcription networks and instances of combinatorial regulation. These results suggest that NCM can deduce correct network connectivity from relatively accurate data. For noisy data, NCM yields the sparsest network capable of explaining the data. In addition, partial knowledge of the network topology can be incorporated into NCM as constraints AVAILABILITY: Algorithm available on request from the authors. Soon to be posted on the web, http://www.seas.ucla.edu/~liaoj.

Reference Type
Journal Article
Authors
Brynildsen MP, Wu TY, Jang SS, Liao JC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference