Reference: Habib SJ, et al. (2007) Analysis and prediction of mitochondrial targeting signals. Methods Cell Biol 80:761-81

Reference Help

Abstract


This chapter describes the known mitochondrial-targeting signals, their analysis, and available methods to predict the presence of such signals in eukaryotic proteins. The best-characterized mitochondrial-targeting signal is the matrix-targeting signal--also called the presequence. Analysis of a large number of mitochondrial presequences suggested that most of them have the potential to form a positively charged amphiphilic alpha-helix in which segregation of positively charged and hydrophobic residues on opposite faces of the helix occurs. Two-dimensional nuclear magnetic resonance, fluorescence methods, and circular dichroism measurements demonstrated the ability of targeting sequences to form amphipathic alpha-helices in membranes or membrane-like environments, whereas in aqueous solution, they are essentially unstructured. The targeting of mitochondrial precursor proteins from the cytosol to the organelle and the subsequent intra-mitochondrial sorting depend on specific targeting and sorting information within the precursor sequence. In the case of the cleavable presequences, the characteristics of this signal are well understood and various bioinformatics and experimental tools are available to analyze them. The prediction provided by these programs is based mainly on physicochemical parameters, such as the abundance of certain amino acids and the hydrophobicity in certain regions, and/or analysis of the plain residue patterns in the amino acid sequences. Several bioinformatics tools, such as TargetP, PSORT II, MITOPRED, MitoProt II, and Predotar are also presented in the chapter.

Reference Type
Journal Article | Review
Authors
Habib SJ, Neupert W, Rapaport D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference