Take our Survey

Reference: Somesh BP, et al. (2007) Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 129(1):57-68

Reference Help

Abstract


Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is >125 Angstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Somesh BP, Sigurdsson S, Saeki H, Erdjument-Bromage H, Tempst P, Svejstrup JQ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference