Reference: Voloshin ON and Camerini-Otero RD (2007) The DinG Protein from Escherichia coli Is a Structure-specific Helicase. J Biol Chem 282(25):18437-47

Reference Help

Abstract

The E. coli DinG protein is a DNA damage inducible member of the helicase superfamily 2. Using a panel of synthetic substrates, we have systematically investigated structural requirements for DNA unwinding by DinG. We have found that the helicase does not unwind blunt-ended DNAs or substrates with 3' ss tails. On the other hand, 5' ss tail of 11-15 nucleotides are sufficient to initiate DNA duplex unwinding; bifurcated substrates further facilitate helicase activity. DinG is active on 5' flap structures, however, it is unable to unwind 3' flaps. Similarly to the homologous S. cerevisiae Rad3 helicase, DinG unwinds DNA.RNA duplexes. DinG is active on synthetic D-loops and R-loops. The ability of the enzyme to unwind D-loops formed on superhelical plasmid DNA by the E. coli recombinase RecA suggests that D-loops may be natural substrates for DinG. While the availability of 5' ssDNA tails is a strict requirement for duplex unwinding by DinG, the unwinding of D-loops can be initiated on substrates without any ss tails. Since DinG is DNA damage-inducible and is active on D-loops and forked structures, which mimic intermediates of homologous recombination and replication, we conclude that this helicase may be involved in recombinational DNA repair and the resumption of replication after DNA damage.

Reference Type
Journal Article
Authors
Voloshin ON, Camerini-Otero RD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference