Take our Survey

Reference: Ogata N (2007) Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry 46(16):4898-911

Reference Help

Abstract

Oxychlorine compounds, such as hypochlorous acid (HOCl) and chlorine dioxide (ClO2), have potent antimicrobial activity. Although the biochemical mechanism of the antimicrobial activity of HOCl has been extensively investigated, little is known about that of ClO2. Using bovine serum albumin and glucose-6-phosphate dehydrogenase of Saccharomyces cerevisiae as model proteins, here I demonstrate that the antimicrobial activity of ClO2 is attributable primarily to its protein-denaturing activity. By solubility analysis, circular dichroism spectroscopy, differential scanning calorimetry, and measurement of enzymatic activity, I demonstrate that protein is rapidly denatured by ClO2 with a concomitant decrease in the concentration of ClO2 in the reaction mixture. Circular dichroism spectra of the ClO2-treated proteins show a change in ellipticity at 220 nm, indicating a decrease in alpha-helical content. Differential scanning calorimetry shows that transition temperature and endothermic transition enthalpy of heat-induced unfolding decrease in the ClO2-treated protein. The enzymatic activity of glucose-6-phosphate dehydrogenase decreases to 10% within 15 s of treatment with 10 muM ClO2. Elemental analyses show that oxygen, but not chlorine, atoms are incorporated in the ClO2-treated protein, providing direct evidence that protein is oxidized by ClO2. Furthermore, mass spectrometry and nuclear magnetic resonance spectroscopy show that tryptophan residues become N-formylkynurenine and tyrosine residues become 3,4-dihydroxyphenylalanine (DOPA) or 2,4,5-trihydroxyphenylalanine (TOPA) in the ClO2-treated proteins. Taking these results together, I conclude that microbes are inactivated by ClO2 owing to denaturation of constituent proteins critical to their integrity and/or function, and that this denaturation is caused primarily by covalent oxidative modification of their tryptophan and tyrosine residues.

Reference Type
Journal Article
Authors
Ogata N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference