Take our Survey

Reference: Paliwal S, et al. (2007) MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446(7131):46-51

Reference Help

Abstract


The mating pathway in Saccharomyces cerevisiae has been the focus of considerable research effort, yet many quantitative aspects of its regulation still remain unknown. Using an integrated approach involving experiments in microfluidic chips and computational modelling, we studied gene expression and phenotypic changes associated with the mating response under well-defined pheromone gradients. Here we report a combination of switch-like and graded pathway responses leading to stochastic phenotype determination in a specific range of pheromone concentrations. Furthermore, we show that these responses are critically dependent on mitogen-activated protein kinase (MAPK)-mediated regulation of the activity of the pheromone-response-specific transcription factor, Ste12, as well as on the autoregulatory feedback of Ste12. In particular, both the switch-like characteristics and sensitivity of gene expression in shmooing cells to pheromone concentration were significantly diminished in cells lacking Kss1, one of the MAP kinases activated in the mating pathway. In addition, the dynamic range of gradient sensing of Kss1-deficient cells was reduced compared with wild type. We thus provide unsuspected functional significance for this kinase in regulation of the mating response.

Reference Type
Journal Article
Authors
Paliwal S, Iglesias PA, Campbell K, Hilioti Z, Groisman A, Levchenko A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference