Reference: Edwards-Ingram L, et al. (2007) Genotypic and Physiological Characterization of Saccharomyces boulardii, the Probiotic Strain of Saccharomyces cerevisiae. Appl Environ Microbiol 73(8):2458-67

Reference Help

Abstract

Saccharomyces boulardii, a yeast that was isolated from fruit in Indochina, has been used as a remedy for diarrhoea since 1950 and is now a commercially available treatment throughout Europe, Africa and South America. Though initially classified as a separate species of Saccharomyces, recent publications have shown that the genome of S. boulardii is so similar to Saccharomyces cerevisiae that the two should be classified as conspecific. This raises the question of the distinguishing molecular and phenotypic characteristics present in S. boulardii that make it perform more effectively as a probiotic organism compared to other strains of S. cerevisiae. This investigation reports some of these distinguishing characteristics including enhanced ability for pseudohyphal switching upon nitrogen limitation and increased resistance to acidic pH. However, these differences did not correlate with increased adherence to epithelial cells or transit through mouse gut. Pertinent characteristics of the S. boulardii genome such as trisomy of chromosome IX, altered copy number of a number of individual genes and sporulation deficiency have been revealed by comparative genome hybridisation using oligonucleotide-based microarrays coupled with a rigorous statistical analysis. The contributions of the different genomic and phenotypic features of S. boulardii to its probiotic nature are discussed.

Reference Type
Journal Article
Authors
Edwards-Ingram L, Gitsham P, Burton N, Warhurst G, Clarke I, Hoyle D, Oliver SG, Stateva L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference