Take our Survey

Reference: Farah ME and Amberg DC (2007) Conserved actin cysteine residues are oxidative stress sensors that can regulate cell death in yeast. Mol Biol Cell 18(4):1359-65

Reference Help

Abstract


Actin's functional complexity makes it a likely target of oxidative stress but also places it in a prime position to coordinate the response to oxidative stress. We have previously shown that the NADPH oxidoreductase Oye2p protects the actin cytoskeleton from oxidative stress. Here we demonstrate that the physiological consequence of actin oxidation is to accelerate cell death in yeast. Loss of Oye2p leads to reactive oxygen species accumulation, activation of the oxidative stress response, nuclear fragmentation and DNA degradation, and premature chronological aging of yeast cells. The oye2Delta phenotype can be completely suppressed by removing the potential for formation of the actin C285-C374 disulfide bond, the likely substrate of the Oye2p enzyme or by treating the cells with the clinically important reductant N-acetylcysteine. Because these two cysteines are coconserved in all actin isoforms, we theorize that we have uncovered a universal mechanism whereby actin helps to coordinate the cellular response to oxidative stress by both sensing and responding to oxidative load.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Farah ME, Amberg DC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference