Take our Survey

Reference: Mirzaei H and Regnier F (2007) Identification of yeast oxidized proteins: chromatographic top-down approach for identification of carbonylated, fragmented and cross-linked proteins in yeast. J Chromatogr A 1141(1):22-31

Reference Help

Abstract

The effects of oxidative stress on the yeast proteome were studied using hydrogen peroxide as the stress agent. Oxidized proteins were isolated by (1) biotinylation of oxidized proteins with biotin hydrazide, (2) affinity selection using monomeric avidin affinity chromatography, and (3) further fractionated by reversed-phase liquid chromatography (RPLC) on a C(8) column. Oxidized protein fractions from RPLC were then trypsin digested and the peptide cleavage fragments identified by tandem mass spectrometry (MS/MS). Slightly over 400 proteins were identified. Sites of carbonyl formation were found in roughly one fourth of these proteins. Oxidation on other amino acids in carbonylated peptides was seen in 32 cases while carbonylation was absent in 96 of the oxidized proteins observed. Although there are large numbers of potential oxidation sites, oxidation seemed to be restricted to a small area in most of the proteins identified. Sometimes multiple amino acids in the same tryptic peptide were oxidized. A second trend was that more than 8% of the proteins identified appeared in more than one of the RPLC fractions. Based on the position of the peptides identified in the primary structure of protein candidates derived from databases it was concluded that this occurred by fragmentation of a parent protein. It is not clear from the data whether the fragmentation process was of enzymatic or oxidative origin. Finally, peptides from two or more proteins occurred together in more than one reversed phase fraction with 2% of the proteins identified. This data was interpreted to mean that this was the result of protein cross-linking.

Reference Type
Journal Article
Authors
Mirzaei H, Regnier F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference