Take our Survey

Reference: Schneider J and Shilatifard A (2006) Histone demethylation by hydroxylation: chemistry in action. ACS Chem Biol 1(2):75-81

Reference Help

Abstract

Histone methylation plays an essential role in epigenetic regulation and has been thought to be an irreversible and stable modification of histones. However, several enzymes have recently been discovered to demethylate mono- and dimethylated lysine residues of histone H3 as well as monomethylated arginines via either amine oxidation or deimination, respectively. The JmjC domain-containing histone demethylase 1 (JHDM1), which is conserved from yeast to human, has been demonstrated to demethylate mono- and di- but not trimethylated H3 K36 via hydroxylation of the methyl moiety within the methylated lysine residue. This study broadens our understanding of different types of reaction mechanisms and cofactor requirements for a different category of histone demethylating machinery.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Schneider J, Shilatifard A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference