Take our Survey

Reference: Davis AJ, et al. (2007) The Tim9p/10p and Tim8p/13p complexes bind to specific sites on Tim23p during mitochondrial protein import. Mol Biol Cell 18(2):475-86

Reference Help

Abstract

The import of polytopic membrane proteins into the mitochondrial inner membrane (IM) is facilitated by Tim9p/Tim10p and Tim8p/Tim13p protein complexes in the intermembrane space (IMS). These complexes are proposed to act as chaperones by transporting the hydrophobic IM proteins through the aqueous IMS and preventing their aggregation. To examine the nature of this interaction, Tim23p molecules containing a single photoreactive cross-linking probe were imported into mitochondria in the absence of an IM potential where they associated with small Tim complexes in the IMS. On photolysis and immunoprecipitation, a probe located at a particular Tim23p site (27 different locations were examined) was found to react covalently with, in most cases, only one of the small Tim proteins. Tim8p, Tim9p, Tim10p, and Tim13p were therefore positioned adjacent to specific sites in the Tim23p substrate before its integration into the IM. This specificity of binding to Tim23p strongly suggests that small Tim proteins do not function solely as general chaperones by minimizing the exposure of nonpolar Tim23p surfaces to the aqueous medium, but may also align a folded Tim23p substrate in the proper orientation for delivery and integration into the IM at the TIM22 translocon.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Davis AJ, Alder NN, Jensen RE, Johnson AE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference