Take our Survey

Reference: Qu X, et al. (2007) The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3'-end processing. J Biol Chem 282(3):2101-15

Reference Help

Abstract


Yeast Rna15 and its vertebrate orthologue CstF-64 play critical roles in mRNA 3'-end processing and in transcription termination downstream of poly(A) sites. These proteins contain N-terminal domains that recognize the poly(A) site, but little is known about their highly conserved C-terminal regions. Here we show by NMR that the C-terminal domains of CstF-64 and Rna15 fold into a three-helix bundle with an uncommon topological arrangement. The structure defines a cluster of evolutionary conserved yet exposed residues that we show to be essential for the interaction between Pcf11 and Rna15. Furthermore, we demonstrate that this interaction is critical for the function of Rna15 in 3'-end processing, but dispensable for transcription termination. The C-terminal domain of the Rna15 homologue Pti1 contains critical sequence alterations within this region that are predicted to prevent Pcf11 interaction, providing an explanation for the distinct functions of these two closely related proteins in the 3'-end formation of RNAP II transcripts. These results define the role of the C-terminal half of Rna15 and provide insight into the network of protein-protein interactions responsible for assembly of the 3'-end processing apparatus.

Reference Type
Journal Article
Authors
Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference