Take our Survey

Reference: Richardson JR, et al. (2007) Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci 95(1):196-204

Reference Help

Abstract


Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice and nonhuman primates causes a parkinsonian disorder characterized by a loss of dopamine-producing neurons in the substantia nigra and corresponding motor deficits. MPTP has been proposed to exert its neurotoxic effects through a variety of mechanisms, including inhibition of complex I of the mitochondrial respiratory chain, displacement of dopamine from vesicular stores, and formation of reactive oxygen species from mitochondrial or cytosolic sources. However, the mechanism of MPTP-induced neurotoxicity is still a matter of debate. Recently, we reported that the yeast single-subunit nicotinamide adenine dinucleotide (reduced) dehydrogenase (NDI1) is resistant to rotenone, a complex I inhibitor that produces a parkinsonian syndrome in rats, and that overexpression of NDI1 in SK-N-MC cells prevents the toxicity of rotenone. In this study, we used viral-mediated overexpression of NDI1 in SK-N-MC cells and animals to determine the relative contribution of complex I inhibition in the toxicity of MPTP. In cell culture, NDI1 overexpression abolished the toxicity of 1-methyl-4-phenylpyridinium, the active metabolite of MPTP. Overexpression of NDI1 through stereotactic administration of a viral vector harboring the NDI1 gene into the substantia nigra protected mice from both the neurochemical and behavioral deficits elicited by MPTP. These data identify inhibition of complex I as a requirement for dopaminergic neurodegeneration and subsequent behavioral deficits produced by MPTP. Furthermore, combined with reports of a complex I defect in Parkinson's disease (PD) patients, the present study affirms the utility of MPTP in understanding the molecular mechanisms underlying dopaminergic neurodegeneration in PD.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Richardson JR, Caudle WM, Guillot TS, Watson JL, Nakamaru-Ogiso E, Seo BB, Sherer TB, Greenamyre JT, Yagi T, Matsuno-Yagi A, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference