Reference: Fry CJ, et al. (2006) The LRS and SIN domains: two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing. Mol Cell Biol 26(23):9045-59

Reference Help

Abstract

Genetic experiments have identified two structurally similar nucleosomal domains, SIN and LRS, required for transcriptional repression at genes regulated by the SWI/SNF chromatin remodeling complex or for heterochromatic gene silencing, respectively. Each of these domains consists of histone H3 and H4 L1 and L2 loops that form a DNA-binding surface at either superhelical location (SHL) +/-2.5 (LRS) or SHL +/-0.5 (SIN). Here we show that alterations in the LRS domain do not result in Sin(-) phenotypes, nor does disruption of the SIN domain lead to loss of ribosomal DNA heterochromatic gene silencing (Lrs(-) phenotype). Furthermore, whereas disruption of the SIN domain eliminates intramolecular folding of nucleosomal arrays in vitro, alterations in the LRS domain have no effect on chromatin folding in vitro. In contrast to these dissimilarities, we find that the SIN and LRS domains are both required for recruitment of Sir2p and Sir4p to telomeric and silent mating type loci, suggesting that both surfaces can contribute to heterochromatin formation. Our study shows that structurally similar nucleosomal surfaces provide distinct functionalities in vivo and in vitro.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Fry CJ, Norris A, Cosgrove M, Boeke JD, Peterson CL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference