Reference: Lopes CA, et al. (2007) Patagonian wines: implantation of an indigenous strain of Saccharomyces cerevisiae in fermentations conducted in traditional and modern cellars. J Ind Microbiol Biotechnol 34(2):139-49

Reference Help

Abstract


In this work we evaluate the implantation capacity of the selected S. cerevisiae indigenous strain MMf9 and the quality of the produced wines in a traditional (T) and a modern (M) cellar with different ecological and technological characteristics in North Patagonia (Argentina). Red musts were fermented in 10,000 l vats using the indigenous strain MMf9 as well as the respective controls: a fermentation conducted with a foreign starter culture (BC strain) in M cellar and a natural fermentation in T cellar. Since commercial S. cerevisiae starters are always used for winemaking in M cellar and in order to compare the results, natural fermentations and fermentations conducted by the indigenous strain MMf9 were performed at pilot (200 l) scale in this cellar, concomitantly. Thirty indigenous yeasts were isolated at three stages of fermentation: initial, middle and end. The identification of the yeast biota associated to vinifications was carried out using ITS1-5.8S-ITS2 PCR-RFLP. The intra-specific variability of the S. cerevisiae populations was evaluated using mtDNA-RFLP analysis. Wines obtained from all fermentations were evaluated for their chemical and volatile composition and for their sensory characteristics. A higher capacity of implantation of the indigenous MMf9 strain was evidenced in the fermentation carried out in M cellar (80% at end stage) than the one carried out in T cellar (40%). This behaviour could indicate that each cellar differs in the diversity of S. cerevisiae strains associated to wine fermentations. Moreover a higher capacity of implantation of the native starter MMf9 with regard to the foreign (BC) one was also found in M cellar. The selected indigenous strain MMf9 was able to compete with the yeast biota naturally present in the must. Additionally, a higher rate of sugar consumption and a lower fermentation temperature were observed in vinifications conducted by MMf9 strain with regard to control fermentations, producing wines with favourable characteristics. Even when its implantation in T fermentation was lower than that observed in M one, we can conclude that the wine features from MMf9 fermentations were better than those from their respective controls. Therefore, MMf9 selected indigenous strain could be an interesting yeast starter culture in North Patagonian wines.

Reference Type
Journal Article
Authors
Lopes CA, Rodriguez ME, Sangorrin M, Querol A, Caballero AC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference