Reference: Thompson DA, et al. (2006) Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. Curr Biol 16(16):1581-90

Reference Help

Abstract

BACKGROUND: We used the budding yeast Saccharomyces cerevisiae to ask how elevated mutation rates affect the evolution of asexual eukaryotic populations. Mismatch repair defective and nonmutator strains were competed during adaptation to four laboratory environments (rich medium, low glucose, high salt, and a nonfermentable carbon source). RESULTS: In diploids, mutators have an advantage over nonmutators in all conditions, and mutators that win competitions are on average fitter than nonmutator winners. In contrast, haploid mutators have no advantage when competed against haploid nonmutators, and haploid mutator winners are less fit than nonmutator winners. The diploid mutator winners were all superior to their ancestors both in the condition they had adapted to, and in two of the other conditions. This phenotype was due to a mutation or class of mutations that confers a large growth advantage during the respiratory phase of yeast cultures that precedes stationary phase. This generalist mutation(s) was not selected in diploid nonmutator strains or in haploid strains, which adapt primarily by fixing specialist (condition-specific) mutations. In diploid mutators, such mutations also occur, and the majority accumulates after the fixation of the generalist mutation. CONCLUSIONS: We conclude that the advantage of mutators depends on ploidy and that diploid mutators can give rise to beneficial mutations that are inaccessible to nonmutators and haploid mutators.

Reference Type
Journal Article
Authors
Thompson DA, Desai MM, Murray AW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference