Reference: Qin LX and Self SG (2006) The clustering of regression models method with applications in gene expression data. Biometrics 62(2):526-33

Reference Help

Abstract


Identification of differentially expressed genes and clustering of genes are two important and complementary objectives addressed with gene expression data. For the differential expression question, many "per-gene" analytic methods have been proposed. These methods can generally be characterized as using a regression function to independently model the observations for each gene; various adjustments for multiplicity are then used to interpret the statistical significance of these per-gene regression models over the collection of genes analyzed. Motivated by this common structure of per-gene models, we proposed a new model-based clustering method--the clustering of regression models method, which groups genes that share a similar relationship to the covariate(s). This method provides a unified approach for a family of clustering procedures and can be applied for data collected with various experimental designs. In addition, when combined with per-gene methods for assessing differential expression that employ the same regression modeling structure, an integrated framework for the analysis of microarray data is obtained. The proposed methodology was applied to two microarray data sets, one from a breast cancer study and the other from a yeast cell cycle study.

Reference Type
Journal Article
Authors
Qin LX, Self SG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference