Reference: Wachek M, et al. (2006) Oligomerization of the Mg2+-transport proteins Alr1p and Alr2p in yeast plasma membrane. FEBS J 273(18):4236-49

Reference Help

Abstract

Alr1p is an integral plasma membrane protein essential for uptake of Mg(2+) into yeast cells. Homologs of Alr1p are restricted to fungi and some protozoa. Alr1-type proteins are distant relatives of the mitochondrial and bacterial Mg(2+)-transport proteins, Mrs2p and CorA, respectively, with which they have two adjacent TM domains and a short Mg(2+) signature motif in common. The yeast genome encodes a close homolog of Alr1p, named Alr2p. Both proteins are shown here to be present in the plasma membrane. Alr2p contributes poorly to Mg(2+) uptake. Substitution of a single arginine with a glutamic acid residue in the loop connecting the two TM domains at the cell surface greatly improves its function. Both proteins are shown to form homo-oligomers as well as hetero-oligomers. Wild-type Alr2p and mutant Alr1 proteins can have dominant-negative effects on wild-type Alr1p activity, presumably through oligomerization of low-function with full-function proteins. Chemical cross-linking indicates the presence of Alr1 oligomers, and split-ubiquitin assays reveal Alr1p-Alr1p, Alr2p-Alr2p, and Alr1p-Alr2p interactions. These assays also show that both the N-terminus and C-terminus of Alr1p and Alr2p are exposed to the inner side of the plasma membrane.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wachek M, Aichinger MC, Stadler JA, Schweyen RJ, Graschopf A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference