Reference: Synowsky SA, et al. (2006) Probing genuine strong interactions and post-translational modifications in the heterogeneous yeast exosome protein complex. Mol Cell Proteomics 5(9):1581-92

Reference Help

Abstract

The characterization of heterogeneous multi-component protein complexes, which goes beyond identification of protein subunits, is a challenging task. Here we describe and apply a comprehensive method that combines a mild affinity purification procedure with a multiplexed mass spectrometry approach for the in-depth characterization of the exosome complex from Saccharomyces cerevisiae expressed at physiologically relevant levels. The exosome is an ensemble of primarily 3'->5' exoribonucleases and plays a major role in RNA metabolism. The complex has been reported to consist of 11 proteins, in molecular weight ranging from 20 to 120 kDa. By using native macromolecular mass spectrometry we measured accurate masses (around 400 kDa) of several (sub)-exosome complexes. Combination of these data with proteolytic peptide LC tandem mass spectrometry using a LTQ-FT-ICR and intact protein LC mass spectrometry provided us with the identity of the different exosome components and (sub)-complexes, including the subunit stoichiometry. We hypothesize that the observed complexes provide information about strong and weak interacting exosome-associated proteins. In our analysis we also identified for the first time phosphorylation sites in seven different exosome subunits. The phosphorylation site in the Rrp4 subunit is fully conserved in the human homologue of Rrp4, which is the only previously reported phosphorylation site in any of the human exosome proteins. The described multiplexed mass spectrometry-based procedure is generic and thus applicable to many different types of cellular molecular machineries, even if they are expressed at endogenous levels.

Reference Type
Journal Article
Authors
Synowsky SA, van den Heuvel RH, Mohammed S, Pijnappel PW, Heck AJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference