Take our Survey

Reference: Brynildsen MP, et al. (2006) Versatility and connectivity efficiency of bipartite transcription networks. Biophys J 91(8):2749-59

Reference Help

Abstract

The modulation of promoter activity by DNA-binding transcription regulators forms a bipartite network between the regulators and genes, in which a smaller number of regulators control a much lager number of genes. To facilitate representation of gene expression data with the simplest possible network structure, we have characterized the ability of bipartite networks to describe data. This has led to the classification of two types of bipartite networks, versatile and nonversatile. Versatile networks can describe any data of the same rank, and are indistinguishable from one another. Non-versatile networks require constraints to be present in data they describe, which may be used to distinguish between different network topologies. By quantifying the ability of bipartite networks to represent data we were able to define connectivity efficiency, which is a measure of how economic the use of connections is within a network with respect to data representation and generation. We postulated that it may be desirable for an organism to maximize their gene expression range per network edge, since development of a regulatory connection may have some evolutionary cost. We found that the transcriptional regulatory networks of both Saccharomyces cerevisiae and Escherichia coli lie close to their respective connectivity efficiency maxima, suggesting that connectivity efficiency may have some evolutionary influence.

Reference Type
Journal Article
Authors
Brynildsen MP, Tran LM, Liao JC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference