Take our Survey

Reference: Black PN and Dirusso CC (2007) Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta 1771(3):286-98

Reference Help

Abstract

Acyl-CoA synthetases (ACSs) are a family of enzymes that catalyze the thioesterification of fatty acids with coenzymeA to form activated intermediates, which play a fundamental role in lipid metabolism and homeostasis of lipid-related processes. The products of the ACS enzyme reaction, acyl-CoAs, are required for complex lipid synthesis, energy production via beta-oxidation, protein acylation and fatty-acid dependent transcriptional regulation. ACS enzymes are also necessary for fatty acid import into cells by the process of vectorial acylation. The yeast Saccharomyces cerevisiae has four long chain ACS enzymes designated Faa1p through Faa4p, one very long chain ACS named Fat1p and one ACS, Fat2p, for which substrate specificity has not been defined. Pivotal roles have been defined for Faa1p and Faa4p in fatty acid import, beta-oxidation and transcriptional control mediated by the transcription factors Oaf1p/Pip2p and Mga2p/Spt23p. Fat1p is a bifunctional protein required for fatty acid transport of long chain fatty acids, as well as activation of very long chain fatty acids. This review focuses on the various roles yeast ACS enzymes play in cellular metabolism targeting especially the functions of specific isoforms in fatty acid transport, metabolism and energy production. We will also present evidence from directed experimentation, as well as information obtained by mining the molecular biological databases suggesting the long chain ACS enzymes are required in protein acylation, vesicular trafficking, signal transduction pathways and cell wall synthesis.

Reference Type
Journal Article
Authors
Black PN, Dirusso CC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference