Take our Survey

Reference: Murnane JP (2006) Telomeres and chromosome instability. DNA Repair (Amst) 5(9-10):1082-92

Reference Help

Abstract

Genomic instability has been proposed to play an important role in cancer by accelerating the accumulation of genetic changes responsible for cancer cell evolution. One mechanism for chromosome instability is through the loss of telomeres, which are DNA-protein complexes that protect the ends of chromosomes and prevent chromosome fusion. Telomere loss can occur as a result of exogenous DNA damage, or spontaneously in cancer cells that commonly have a high rate of telomere loss. Mouse embryonic stem cells and human tumor cell lines that contain a selectable marker gene located immediately adjacent to a telomere have been used to investigate the consequences of telomere loss. In both cell types, telomere loss is followed by either the addition of a new telomere on to the end of the broken chromosome, or sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles that result in DNA amplification and large terminal deletions. The regions amplified by B/F/B cycles can then be transferred to other chromosomes, either through the formation of double-minute chromosomes that reintegrate at other sites, or through end-to-end fusions between chromosomes. B/F/B cycles eventually end when a chromosome acquires a new telomere by one of several mechanisms, the most common of which is translocation, which can involve either nonreciprocal transfer or duplication of all or part of an arm of another chromosome. Telomere acquisition involving nonreciprocal translocations results in the loss of a telomere on the donor chromosome, which subsequently becomes unstable. In contrast, translocations involving duplications do not destabilize the donor chromosome, although they result in allelic imbalances. Thus, the loss of a single telomere can generate a wide variety of chromosome alterations commonly associated with human cancer, not only on the chromosome that originally lost its telomere, but other chromosomes as well. Factors promoting spontaneous telomere loss and the resulting B/F/B cycles are therefore likely to be important in generating the karyotypic changes associated with human cancer.

Reference Type
Journal Article | Review | Research Support, N.I.H., Extramural
Authors
Murnane JP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference