Reference: Blank A and Loeb LA (1991) Isolation of temperature-sensitive DNA polymerase III from Saccharomyces cerevisiae cdc2-2. Biochemistry 30(32):8092-6

Reference Help

Abstract

DNA polymerase III of the yeast Saccharomyces cerevisiae has been reported to be encoded at the CDC2 locus based on two observations. First, the CDC2 gene has homology to known DNA polymerase genes [Boulet et al. (1989) EMBO J. 8, 1849-1854], and second, the mutants cdc2-1 and cdc2-2 yield little or no DNA polymerase III activity in vitro [Boulet et al. (1989); Sitney et al. (1989) Cell 56, 599-605]. We describe here the isolation of temperature-sensitive DNA polymerase III from cdc2-2 strains. Our results provide direct experimental confirmation of the previously inferred gene/enzyme relationship and verify the conclusion that DNA polymerase III is required to replicate the genome. We isolated DNA polymerase III from two cdc2-2 strains, one containing the wild-type allele for DNA polymerase I (CDC17) and the other a mutant DNA polymerase I allele (cdc17-1). Yields from cdc2-2 cells of both DNA polymerase III activity and an associated 3'-5'-exonuclease activity [exonuclease III; Bauer et al. (1988) J. Biol. Chem. 263, 917-924] were decreased relative to yields from CDC2 cells. DNA polymerase III activity from cdc2-2 strains is thermolabile, displaying at least a 4-fold reduction in half-life at 44 degrees C. The activity is also labile at 37 degrees C, a temperature which is restrictive for growth of cdc2-2 but not CDC2 strains. At 23 degrees C, a temperature which is permissive for growth of both cdc2-2 and CDC2 strains, the mutant and wild-type DNA polymerase III activities display equal stability. These observations provide a demonstrable biochemical basis for the thermosensitive phenotype of cdc2-2 cells.

Reference Type
Journal Article
Authors
Blank A, Loeb LA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference