Reference: Miyazaki T, et al. (2006) Kre29p is a novel nuclear protein involved in DNA repair and mitotic fidelity in Candida glabrata. Curr Genet 50(1):11-22

Reference Help

Abstract


Candida glabrata KRE29 is an ortholog of Saccharomyces cerevisiae KRE29. S. cerevisiae Kre29p has been identified by affinity purification as a subunit of the Smc5-Smc6 complex, which is required for DNA repair and chromosome segregation. However, mutant phenotypes of S. cerevisiae KRE29 have not been well characterized and none of its orthologs' functions has been reported. Here we report phenotypic characteristics of a C. glabrata kre29 deletant. The absence of C. glabrata Kre29p resulted in decreased viability, exhibiting cell cycle arrest between late S-phase and metaphase even under normal growth conditions, and also caused an increase of plasmid loss rate, implying that Kre29p is required for mitotic chromosome transmission fidelity. The deletant showed increased sensitivity to high temperature as well as to DNA damaging agents including UV, gamma ray, 4-nitroquinoline-1-oxide and methyl methanesulfonate, and the phenotypes were restored in the KRE29 reintegrant. Consistent with the Deltakre29 phenotypes, a Kre29p-GFP fusion protein was located in the nucleus. Furthermore, Kre29p-GFP became concentrated and formed distinct foci after exposure to 4-nitroquinoline-1-oxide. These results suggest the involvement of C. glabrata Kre29p in DNA repair. To our knowledge, this is the first report addressing a cellular protein involved in DNA repair in C. glabrata.

Reference Type
Journal Article
Authors
Miyazaki T, Tsai HF, Bennett JE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference