Take our Survey

Reference: Chong PK, et al. (2006) Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: Implication of multiple injections. J Proteome Res 5(5):1232-40

Reference Help

Abstract

We analyzed 10 isobaric tags for relative and absolute quantitation (iTRAQ) experiments using three different model organisms across the domains of life: Saccharomyces cerevisiae KAY446, Sulfolobussolfataricus P2, and Synechocystis sp. PCC6803. A double database search strategy was employed to minimize the rate of false positives to less than 3% for all organisms. The reliability of proteins with single-peptide identification was also assessed using the search strategy, coupled with multiple analyses of samples into LC-MS/MS. The outcomes of the three LC-MS/MS analyses provided higher proteome coverage with an average increment in total proteins identified of 6%, 33%, and 50% found in S. cerevisiae, S. solfataricus, and Synechocystis sp., respectively. The iTRAQ quantification values were found to be highly reproducible across the injections, with an average coefficient of variation (CV) of 0.09 (scattering from 0.14 to 0.04) calculated based on log mean average ratio for all three organisms. Hence, we recommend multiple analyses of iTRAQ samples for greater proteome coverage and precise quantification.

Reference Type
Journal Article
Authors
Chong PK, Gan CS, Pham TK, Wright PC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference