Take our Survey

Reference: Evans SK, et al. (2006) Fluorescence resonance energy transfer as a method for dissecting in vivo mechanisms of transcriptional activation. Biochem Soc Symp (73):217-24

Reference Help

Abstract

The first step in transcriptional activation of protein-coding genes involves the assembly on the promoter of a large PIC (pre-initiation complex) comprising RNA polymerase II and a suite of general transcription factors. Transcription is greatly enhanced by the action of promoter-specific activator proteins (activators) that function, at least in part, by increasing PIC formation. Activator-mediated stimulation of PIC assembly is thought to result from a direct interaction between the activator and one or more components of the transcription machinery, termed the 'target'. The unambiguous identification of direct, physiologically relevant in vivo targets of activators has been a considerable challenge in the transcription field. The major obstacle has been the lack appropriate experimental methods to measure direct interactions with activators in vivo. The development of spectral variants of green fluorescent protein has made it possible to perform FRET (fluorescence resonance energy transfer) analysis in living cells, thereby allowing the detection of direct protein-protein interactions in vivo. Here we discuss how FRET can be used to identify activator targets and to dissect in vivo mechanisms of transcriptional activation.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Evans SK, Aiello DP, Green MR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference