Reference: Liao M, et al. (2006) Endoplasmic reticulum-associated degradation of cytochrome P450 CYP3A4 in Saccharomyces cerevisiae: further characterization of cellular participants and structural determinants. Mol Pharmacol 69(6):1897-904

Reference Help

Abstract

The monotopic, endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) undergo variable proteolytic turnover. CYP3A4, the dominant human liver drug-metabolizing enzyme, is degraded via a ubiquitin (Ub)-dependent 26S proteasomal pathway after heterologous expression in Saccharomyces cerevisiae. This turnover involves the Ub-conjugating enzyme Ubc7p and the 19S proteasomal subunit Hrd2p but is independent of Hrd1p/Hrd3p, a major Ub-ligase (E3) involved in ER protein degradation. We now show that CYP3A4 ERAD also involves the Ubc7p-ER anchor Cue1p, because CYP3A4 is significantly stabilized at the stationary growth phase in Cue1p-deficient yeast. To determine whether the other major Ub-ligase Doa10p or Rsp5p involved in ER protein degradation functions in CYP3A4 ERAD, wild type and Doa10p- or Rsp5p-deficient yeast strains were also similarly examined. No appreciable CYP3A4 stabilization was detected in either Doa10p- or Rsp5p-deficient yeast, thereby excluding these E3s and revealing that CYP3A4 ERAD involves a novel or yet to be identified E3. Similar studies also revealed that the Cdc48p-Ufd1p-Hrd4p complex, responsible for the translocation of polyubiquitinated ER proteins was critical for CYP3A4 ERAD. We previously reported that grafting of the C-terminal (CT) CYP3A4 heptapeptide onto the CYP2B1 C terminus switched its proteolytic susceptibility from predominantly vacuolar to proteasomal degradation. To determine the relevance of this CT heptapeptide to CYP3A4 ERAD, CYP3A4 degradation after CT heptapeptide-deletion (CYP3A4DeltaCT) was similarly examined in yeast. These findings revealed that CYP3A4DeltaCT was also degraded by Ubc7p-26S proteasomal pathway, thereby indicating that this CT heptapeptide is not critical for CYP3A4 proteasomal degradation. Thus, unlike CYP2B1, CYP3A4 harbors additional/multiple structural degrons for its recruitment into the Ubproteasomal pathway.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Liao M, Faouzi S, Karyakin A, Correia MA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference