Reference: Carter GW, et al. (2006) Disentangling information flow in the Ras-cAMP signaling network. Genome Res 16(4):520-6

Reference Help

Abstract

The perturbation of signal-transduction molecules elicits genomic-expression effects that are typically neither restricted to a small set of genes nor uniform. Instead there are broad, varied, and complex changes in expression across the genome. These observations suggest that signal transduction is not mediated by isolated pathways of information flow to distinct groups of genes in the genome. Rather, multiple entangled paths of information flow influence overlapping sets of genes. Using the Ras-cAMP pathway in Saccharomyces cerevisiae as a model system, we perturbed key pathway elements and collected genomic-expression data. Singular value decomposition was applied to separate the genome-wide transcriptional response into weighted expression components exhibited by overlapping groups of genes. Molecular interaction data were integrated to connect gene groups to perturbed signaling elements. The resulting series of linked subnetworks maps multiple putative pathways of information flow through a dense signaling network, and provides a set of testable hypotheses for complex gene-expression effects across the genome.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Carter GW, Rupp S, Fink GR, Galitski T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference