Take our Survey

Reference: Fernandes H, et al. (2006) The Rho3 and Rho4 small GTPases interact functionally with Wsc1p, a cell surface sensor of the protein kinase C cell-integrity pathway in Saccharomyces cerevisiae. Microbiology 152(Pt 3):695-708

Reference Help

Abstract

Rgd1, a GTPase-activating protein, is the only known negative regulator of the Rho3 and Rho4 small GTPases in the yeast Saccharomyces cerevisiae. Rho3p and Rho4p are involved in regulating cell polarity by controlling polarized exocytosis. Co-inactivation of RGD1 and WSC1, which is a cell wall sensor-encoding gene, is lethal. Another plasma membrane sensor, Mid2p, is known to rescue the rgd1Deltawsc1Delta synthetic lethality. It has been proposed that Wsc1p and Mid2p act upstream of the protein kinase C (PKC) pathway to function as mechanosensors of cell wall stress. Analysis of the synthetic lethal phenomenon revealed that production of activated Rho3p and Rho4p leads to lethality in wsc1Delta cells. Inactivation of RHO3 or RHO4 was able to rescue the rgd1Deltawsc1Delta synthetic lethality, supporting the idea that the accumulation of GTP-bound Rho proteins, following loss of Rgd1p, is detrimental if the Wsc1 sensor is absent. In contrast, the genetic interaction between RGD1 and MID2 was not due to an accumulation of GTP-bound Rho proteins. It was proposed that simultaneous inactivation of RGD1 and WSC1 constitutively activates the PKC-mitogen-activated protein kinase (MAP kinase) pathway. Moreover, it was shown that the activity of this pathway was not involved in the synthetic lethal interaction, which suggests the existence of another mechanism. Consistent with this idea, it was found that perturbations in Rho3-mediated polarized exocytosis specifically impair the abundance and processing of Wsc1 and Mid2 proteins. Hence, it is proposed that Wsc1p participates in the regulation of a Rho3/4-dependent cellular mechanism, and that this is distinct from the role of Wsc1p in the PKC-MAP kinase pathway.

Reference Type
Journal Article
Authors
Fernandes H, Roumanie O, Claret S, Gatti X, Thoraval D, Doignon F, Crouzet M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference