Take our Survey

Reference: Zhu Z, et al. (2006) Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosens Bioelectron 21(11):2046-51

Reference Help

Abstract

Progress in miniature chip-design raises demands for implantable power sources in health care applications such as continuous glucose monitoring of diabetic patients. Pioneered by Adam Heller, miniaturized enzymatic biofuel cells (mBCs) convert blood sugars into electrical energy by employing for example glucose oxidase (GOx) on the anode and bilirubin oxidase on the cathode. To match application demands it is crucial to increase lifetime and power output of mBCs. The power output has been limited by the performance of GOx on the anode. We developed a glucose oxidase detection assay (GODA) as medium-throughput screening system for improving GOx properties by directed protein evolution. GODA is a reaction product detection assay based on coupled enzymatic reactions leading to NADPH formation which is recorded at 340 nm. The main advantage of the assay is that it detects the production of d-gluconolactone instead of the side-product hydrogen peroxide and enables to improve bioelectrochemical properties of GOx. For validating the screening system, a mutagenic library of GOx from Aspergillus niger (EC 1.1.3.4) was generated and screened for improved activity using Saccharomyces cerevisiae as host. Directed evolution resulted in a GOx mutant I115V with 1.4-1.5-fold improved activity for beta-d-glucose (Vmax from 7.94 to 10.81 micromol min(-1) mg(-1); Km approximately 19-21 mM) and oxygen consumption kinetics correlate well [Vmax (O2) from 5.94 to 8.34 micromol min(-1) mg(-1); Km (O2) from 700 to 474 microM]. The developed mutagenic protocol and GODA represent a proof-of-principle that GOx can be evolved by directed evolution in S. cerevisiae for putative use in biofuel cells.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Zhu Z, Momeu C, Zakhartsev M, Schwaneberg U
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference