Take our Survey

Reference: Ramirez-Montealegre D and Pearce DA (2005) Defective lysosomal arginine transport in juvenile Batten disease. Hum Mol Genet 14(23):3759-73

Reference Help

Abstract


Mutations in the CLN3 gene, which encodes a lysosomal membrane protein, are responsible for the neurodegenerative disorder juvenile Batten disease. A previous study on the yeast homolog to CLN3, designated Btn1p, revealed a potential role for CLN3 in the transport of arginine into the yeast vacuole, the equivalent organelle to the mammalian lysosome. Lysosomes isolated from lymphoblast cell lines, established from individuals with juvenile Batten disease-bearing mutations in CLN3, but not age-matched controls, demonstrate defective transport of arginine. Furthermore, we show that there is a depletion of arginine in cells derived from individuals with juvenile Batten disease. We have, therefore, characterized lysosomal arginine transport in normal lysosomes and show that it is ATP-, v-ATPase- and cationic-dependent. This and previous studies have shown that both arginine and lysine are transported by the same transport system, designated system c. However, we report that lysosomes isolated from juvenile Batten disease lymphoblasts are only defective for arginine transport. These results suggest that the CLN3 defect in juvenile Batten disease may affect how intracellular levels of arginine are regulated or distributed throughout the cell. This assertion is supported by two other experimental approaches. First, an antibody to CLN3 can block lysosomal arginine transport and second, expression of CLN3 in JNCL cells using a lentiviral vector can restore lysosomal arginine transport. CLN3 may have a role in regulating intracellular levels of arginine possibly through control of the transport of this amino acid into lysosomes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Ramirez-Montealegre D, Pearce DA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference