Reference: Brynildsen MP, et al. (2005) Transcriptional regulation and metabolism. Biochem Soc Trans 33(Pt 6):1423-6

Reference Help

Abstract


Understanding organisms from a systems perspective is essential for predicting cellular behaviour as well as designing gene-metabolic circuits for novel functions. The structure, dynamics and interactions of cellular networks are all vital components of systems biology. To facilitate investigation of these aspects, we have developed an integrative technique called network component analysis, which utilizes mRNA expression and transcriptional network connectivity to determine network component dynamics, functions and interactions. This approach has been applied to elucidate transcription factor dynamics in Saccharomyces cerevisiae cell-cycle regulation, detect cross-talks in Escherichia coli two-component signalling pathways, and characterize E. coli carbon source transition. An ultimate test of system-wide understanding is the ability to design and construct novel gene-metabolic circuits. To this end, artificial feedback regulation, cell-cell communication and oscillatory circuits have been constructed, which demonstrate the design principles of gene-metabolic regulation in the cell.

Reference Type
Journal Article
Authors
Brynildsen MP, Wong WW, Liao JC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference