Take our Survey

Reference: Demple B and Sung JS (2005) Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair (Amst) 4(12):1442-9

Reference Help

Abstract


Many oxidative DNA lesions are handled well by base excision repair (BER), but some types may be problematic. Recent work indicates that 2-deoxyribonolactone (dL) is such a lesion by forming stable, covalent cross-links between the abasic residue and DNA repair proteins with lyase activity. In the case of DNA polymerase beta, the reaction is potentiated by incision of dL by Ape1, the major mammalian AP endonuclease. When repair is prevented, polymerase beta is the most reactive cross-linking protein in whole-cell extracts. Cross-linking with dL is largely avoided by processing the damage through the "long-patch" (multinucleotide) BER pathway. However, if excess damage leads to the accumulation of unrepaired oxidative lesions in DNA, there may be a danger of polymerase beta-mediated cross-link formation. Understanding how cells respond to such complex damage is an important issue. In addition to its role in defending against DNA damage caused by exogenous agents, Ape1 protein is essential for coping with the endogenous DNA damage in human cells grown in culture. Suppression of Ape1 using RNA-interference technology causes arrest of cell proliferation and activation of apoptosis in various cell types, correlated with the accumulation of unrepaired abasic DNA damage. Notably, all these effects are reversed by expression of the unrelated protein Apn1 of S. cerevisiae, which shares only the enzymatic repair function with Ape1 (AP endonuclease).

Reference Type
Journal Article
Authors
Demple B, Sung JS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference