Reference: Utley RT, et al. (2005) Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25(18):8179-90

Reference Help

Abstract


The NuA4 complex is a histone H4/H2A acetyltransferase involved in transcription and DNA repair. While histone acetylation is important in many processes, it has become increasingly clear that additional histone modifications also play a crucial interrelated role. To understand how NuA4 action is regulated, we tested various H4 tail peptides harboring known modifications in HAT assays. While dimethylation at arginine 3 (R3M) had little effect on NuA4 activity, phosphorylation of serine 1 (S1P) strongly decreased the ability of the complex to acetylate H4 peptides. However, R3M in combination with S1P alleviates the repression of NuA4 activity. Chromatin from cells treated with DNA damage-inducing agents shows an increase in phosphorylation of serine 1 and a concomitant decrease in H4 acetylation. We found that casein kinase 2 phosphorylates histone H4 and associates with the Rpd3 deacetylase complex, demonstrating a physical connection between phosphorylation of serine 1 and unacetylated H4 tails. Chromatin immunoprecipitation experiments also link local phosphorylation of H4 with its deacetylation, during both transcription and DNA repair. Time course chromatin immunoprecipitation data support a model in which histone H4 phosphorylation occurs after NuA4 action during double-strand break repair at the step of chromatin restoration and deacetylation. These findings demonstrate that H4 phospho-serine 1 regulates chromatin acetylation by the NuA4 complex and that this process is important for normal gene expression and DNA repair.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, Cote J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference