Reference: Todeschini AL, et al. (2005) Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 25(17):7459-72

Reference Help

Abstract

Ty1 retrotransposons of the yeast Saccharomyces cerevisiae are activated by different kinds of stress. Here we show that Ty1 transcription is stimulated under severe adenine starvation conditions. The Bas1 transcriptional activator, responsible for the induction of genes of the de novo AMP biosynthesis pathway (ADE) in the absence of adenine, is not involved in this response. Activation occurs mainly on Ty1 elements, whose expression is normally repressed by chromatin and is suppressed in a hta1-htb1Delta mutant that alters chromatin structure. Activation is also abolished in a snf2Delta mutant. Several regions of the Ty1 promoter are necessary to achieve full activation, suggesting that full integrity of the promoter sequences might be important for activation. Together, these observations are consistent with a model in which the activation mechanism involves chromatin remodeling at Ty1 promoters. The consequence of Ty1 transcriptional activation in response to adenine starvation is an increase in Ty1 cDNA levels and a relief of Ty1 dormancy. The retrotransposition of four native Ty1 elements increases in proportion to their increase in transcription. Implications for the regulation of Ty1 mobility by changes in Ty1 mRNA levels are discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Todeschini AL, Morillon A, Springer M, Lesage P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference