Reference: Pinsky BA and Biggins S (2005) The spindle checkpoint: tension versus attachment. Trends Cell Biol 15(9):486-93

Reference Help

Abstract

The spindle checkpoint ensures the fidelity of chromosome segregation by preventing cell-cycle progression until all the chromosomes make proper bipolar attachments to the mitotic spindle and come under tension. Despite significant advances in our understanding of spindle checkpoint function, the primary signal that activates the spindle checkpoint remains unclear. Whereas some experiments indicate that the checkpoint recognizes the lack of microtubule attachment to the kinetochore, others indicate that the checkpoint senses the absence of tension generated on the kinetochore by microtubules. The interdependence between tension and microtubule attachment make it difficult to determine whether these signals are separable. In this article (which is part of the Chromosome Segregation and Aneuploidy series), we consider recent evidence that supports and opposes the hypothesis that defects in tension act as the primary checkpoint signal.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S.
Authors
Pinsky BA, Biggins S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference